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1 Introduction

Typically numerical solutions to complex problems are very difficult to predict. A user will generally
not know in advance where the dynamics is complicated and, if the mesh used does not have a
high enough resolution, the overall solution quality suffers. To overcome this, a naive idea is to
simply use a very fine mesh from the start. However, with only limited computational power at
our disposal, such an approach is impractical in most engineering applications.

To resolve this issue, an additional approach may be used: Adaptive methods. Adaptive
methods work by attempting to estimate the numerical error and then automatically refine or
coarsen the mesh in regions of the domain. In this way, the solver efficiently allocates computational
resources by making the mesh more fine only where it needs to be while making it coarse where
only a few elements suffice in resolving the solution. Several approaches exist, in the finite element
framework, to perform this adaptation. The first is h-adaptation, in which elements in the mesh
are split up (to refine) or combined (to coarsen) Thus, as the number of elements over a given
region increase, the solution is able to be more accurately resolved. The second approach is p-
adaptation, where the order of the basis functions used to approximate the solution is varied.
Finally, recent years have seen increased research into hp-adaptive methods, where both the mesh
size and polynomial order may be adjusted [1]. In this work, we investigate the h-adaptive finite
element method. As test cases, the Poisson equation is studied using manufactured solutions.

2 Finite Element Discretization

We begin, in this section, outlining the discretization of the physical equations using the finite ele-
ment method. The cases studied involved the Poisson equation with Dirichlet boundary conditions
and can be written as:

∇2u = f(x, y) on Ω, (1)

u = gD on ∂Ω. (2)

We start by first deriving the weak form. Consider a test function v. After multiplying both sides
of the differential equation by the test function and integrating by parts, the variational form is
derived and is given by
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a(u, v) = b(v), v ∈ H1(Ω)

a(u, v) =

∫
Ω
∇u · ∇v dΩ

b(v) =

∫
Ω
−f(x, y) · v dΩ. (3)

The space of functions satisfied by the test functions and solution can be seen to be given by

v ∈ X0 = {v, v ∈ H1(Ω), v|∂Ω = 0} (4)

u ∈ XBC = {u, u ∈ H1(Ω), u|∂Ω = gD} (5)

We now consider searching for the finite element solution. To do this, the finite dimensional
subspaces within which the numerical solution is searched for must be specified. These subspaces
are given as:

v ∈ X h0 ⊂ X0 (6)

u ∈ X hBC ⊂ XBC (7)

(8)

For the Galerkin method, we require the finite dimensional subspaces to be identical, which can be
satisfied if X h0 is the homogeneous version of X hBC . Moreover, if all basis functions that are non-zero
on the boundary are given as ψi,BC , then the finite dimensional space for the solution may then be
reformulated as X hBC = {ψi,BC + φ, φ ∈ Xh

0 , ψi,BC |∂Ω 6= 0}.

For the remaining portion of the derivation we restrict ourselves to the case of nodal basis
functions which have been used for all cases. The approximate numerical solution, uh, in this case
can be represented as

uh =

NBC∑
i=1

gD,i · ψi,BC +

NDOF∑
i=1

uhi · ψi (9)

where NBC corresponds to the number of nodal basis functions that are non-zero on the boundary,
gD,i are the specified values of the Dirichlet boundary condition at these nodes, NDOF are the
number of basis functions that vanish at the boundary (which is equivalent to the number of
degrees of freedom), and ψi are the these basis functions that are only non-zero in the interior of
the domain. Using this formulation for the numerical solution, the Galerkin approximation is then
given as

a(uh, ψj) = b(ψj) ∀j = 1, ..., NDOF . (10)
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Figure 1: A quadrilateral mesh with two hanging nodes at (x, y) = (0.75, 0.5) and (x, y) = (0.5, 0.25).

Substituting the expansion for uh, we obtain:

a(

NBC∑
i=1

gD,i · ψi,BC +

NDOF∑
i=1

uhi · ψi, ψj) = b(ψj) ∀j = 1, ..., NDOF

NDOF∑
i=1

uhi · a(ψi, ψj) = b(ψj)−
NBC∑
i=1

gD,i · a(ψi,BC , ψj) ∀j = 1, ..., NDOF (11)

Equation (11) forms the system of equations to determine the values of the numerical solution at
the degrees of freedom (uhi ).

2.1 Triangular Elements

To allow for efficient refining of the mesh, a choice had to be made between using quadrilateral or
triangular elements. After some initial investigation, it was determined that triangles offered the
most versatility on this front. This was due to the presence of what are known as hanging nodes on
quadrilateral meshes. These nodes result when a single quadrilateral element has as its neighbors,
on one of its edges, multiple quadrilateral elements (this can be seen in Figure (1)). The treatment
of hanging nodes is non trivial as the value at each node must be constrained in order to retain
continuity of the global solution. Moreover, the nodal basis functions must also be modified to
ensure that they too are not discontinuous (so that they remain in H1(Ω)). Triangle meshes avoid
these complexities as they allow for refinement strategies that disallow the generation of hanging
nodes and do not need extra treatment of the basis functions to retain their continuity.

2.2 Transformation Mapping

To solve for the numerical solution, all computation was completed by mapping the equations onto
a common reference element on a reference domain spanned by coordinates ξ and η as shown in
Figure (2).
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Figure 2: A scehmatic depicting the mapping of the reference triangle onto the physical domain.

To begin, first the nodal basis functions (used to resolve the numerical solution) were defined
on the triangle reference element. These functions can be found (for the linear case) to be given as

ψ̂1(ξ, η) = 1− ξ − η
ψ̂2(ξ, η) = ξ

ψ̂3(ξ, η) = η (12)

where we have used the hat notation to highlight that these functions are defined on the reference
domain.

Using these basis functions, a mapping from the reference to the physical domain is possible
for each element. If an arbitrary element has vertices given as ~x1, ~x2 and ~x3, the transformation
from the reference to physical domain is given by

[
x(ξ, η)
y(ξ, η)

]
= ~x(ξ, η) =

3∑
i=1

ψ̂i(ξ, η) · ~xi. (13)

A schematic showing how this transformation would be applied to an arbitrary element on the
mesh is shown in Figure (2).

The transformation now allows the ability to reformulate all integrals on the physical domain
in equation (3) onto the reference domain. First, all partial derivatives on the physical domain can
be expressed as

∂f

∂x
=

1

J
·
[
∂y

∂η

∂f

∂ξ
− ∂y

∂ξ

∂f

∂η

]
, (14)

∂f

∂y
=

1

J
·
[
− ∂x

∂η

∂f

∂ξ
+
∂x

∂ξ

∂f

∂η

]
, (15)
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where J is the Jacobian and is given by

J =
∂x

∂ξ

∂y

∂η
− ∂y

∂ξ

∂x

∂η
. (16)

All terms of the form ∂xi
∂ξj

are known as metric terms and can be computed using equation (13). To

map the bilinear form to the reference domain we first split the integral into a sum of integrals over
each element and then map each integral onto the reference domain (ΩR). In doing so, we obtain
for the bilinear form with basis functions ψi and ψj as inputs the following:

a(ψi, ψj) =

Nelements∑
k=1

∫
ΩR

[[
∂y

∂η

∂ψ̂i
∂ξ
− ∂y

∂ξ

∂ψ̂i
∂η

]
·
[
∂y

∂η

∂ψ̂j
∂ξ
− ∂y

∂ξ

∂ψ̂j
∂η

]
+

[
− ∂x

∂η

∂ψ̂i
∂ξ

+
∂x

∂ξ

∂ψ̂i
∂η

]
·
[
− ∂x

∂η

∂ψ̂j
∂ξ

+
∂x

∂ξ

∂ψ̂j
∂η

]]
· 1

J
dΩR (17)

where Nelements corresponds to the number of elements on the mesh and, in each integral in the
sum, the metric and Jacobian terms are those obtained using the mapping for that specific triangle.
It is important to note that the basis functions ψi and ψj in the integrand contain a hat as, when
mapping the integral, these transform into the nodal basis functions defined on the reference domain.
Similarly, the linear form may also be mapped to the reference domain and is given as

b(ψj) =

Nelements∑
k=1

∫
ΩR

−ψ̂j · f(x(ξ, η), y(ξ, η)) · J dΩR. (18)

where x(ξ, η) and y(ξ, η) are from the transformation given in equation (13).

The final topic that needs to be addressed concerns now the numerical evaluation of the
given integrals. On triangular elements, accurate quadrature rules may be derived. For an exact
evaluation of integrals of functions of degree 1, a quadrature rule of order 1 may be used and is
given as

∫
Ωk

f(x, y) dx dy = Ak · f(x̂, ŷ) (19)

where Ωk is the domain of the triangle, Ak is its area, and (x̂, ŷ) correspond to the centroid of the
given triangle. Moreover, a quadrature rule of order 3, which is exact for integrating polynomials
of order 2, is given by

∫
Ωk

f(x, y) dx dy =
1

3
Ak

3∑
l=1

f(xl, yl) (20)

where the quadrature nodes (xl, yl) are the midpoints of the sides of each triangle. For the evaluation
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Figure 3: The general mesh adaptation algorithm used.

of integrals, the quadrature rule given by equation (20) was used. For more details regarding
integration over triangles, we refer the reader to [2].

3 The Adaptation Algorithm

In this section, we outline the automatic mesh adaptation algorithm. The general procedure to
the adaptation process is shown in Figure (3). Here, it can be seen that we first begin with an
initial coarse mesh. Once the solution is computed on this mesh, the difficult task of estimating the
error local to each element is completed. Following this, if the error is low enough, the adaptation
procedure is discontinued. Otherwise, the elements with the highest error are marked and refined
and the process is repeated.

3.1 Error Estimates

The estimation of the error is a crucial step in the adaptation algorithm. From implicit and explicit
a-posterioi estimators, to adjoint based approaches, numerous techniques exist for this task [3].

In this work, we utilize the method proposed by Babuska and Rheinboldt in [4] to estimate
the error of a given numerical solution. This approach entails solving a localized auxiliary problem
on subdomains in the mesh. To illustrate this, we consider the problem of estimating the error
when solving the Poisson equation as given in equation (1). Consider that the numerically computed
solution on the domain is û0. Moreover, if the space of nodal basis functions to resolve the Galerkin
approximation is given as {ψi}, then the support of a given node, denoted as supp(ψi), is the
subdomain of all nodes on which the nodal basis function is non-zero. An example of the support
of a nodal basis function that is equal to 1 at (x, y) = (0.5, 0.5) is shown in Figure (4) for a triangular
mesh. With these defined, the auxiliary problem is given as

∇2w = f on Ωi = supp(ψi)

w = û0 on ∂Ωi. (21)

In practice, this auxiliary problem cannot be solved exactly and a finite element discretization is
once more used. However, in order to obtain a more accurate solution than û0, high order basis
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functions or a refinement of the domain Ωi is done. An example of this process is shown in Figure
(5) when computing the auxiliary problem over supp(ψi) where ψi corresponds to the node at
(x, y) = (0.5, 0.5) (the same basis function shown in Figure (4)). In this case, a more accurate
auxiliary solution is computed by refining the subdomain into more elements as seen in the Figure.
With the auxiliary problem solved for w, the error indicator on the subdomain Ωi is then given as

η2
i = a(û0 − w, û0 − w) =

∫
Ωi

∇(û0 − w) · ∇(û0 − w)dΩ. (22)

The error indicator can be seen to use the energy norm to estimate the error on each subdomain Ωi.
Moreover, it is important to note that in general multiple nodal basis functions will be non-zero in
each element resulting in multiple values of ηi in that element (due to the fact that supp(ψi) may
overlap between some basis functions). In these situations, we define the error indicator on a given
element as the maximum of all these computed values.

The error indicator on each element finally gives a measure of how much each element con-
tributes to the global error. It therefore makes sense to mark the elements to refine as those with
the higher values of ηi in order to reduce the solution error. This is what was done for all numerical
cases presented, as all elements with

η ≥ λ · max
1≤j≤Ne

ηj , λ ∈ [0, 1].

where Ne refers to the number of elements on the mesh, were marked and refined in the adaptation
process. Moreover, values of λ between 0.4 and 0.5 were used for the cases investigated.
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Figure 4: A sample of a triangular mesh and support of the nodal basis function that is non-zero at (x, y) =
(0.5, 0.5).
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Figure 5: A schematic depicting the unrefined and refined subdomain Ωi used to numerically solve the
auxiliary problem.

3.2 Mesh Refinement

With the details covered on how the error may be estimated, we finally turn to describing how to
split elements in order to generate finer meshes.

Central to the refinement process is that the angles of each triangle remain bounded away
from 0 and π, for it has been numerically shown that as the maximum angle in a given mesh
approaches π the interpolation error grows [5]. As a result, any refinement process must ensure
that this is taken into account when determining how to split the elements. In this work, the
refinement algorithm proposed by Bank (sometimes referred to as the Red-Green algorithm) has
been used [6] [7]. In this approach, elements are either divided into 4 (by joining the midpoints
of the edges) or bisected, as seen in Figure (6). Moreover, hanging nodes are removed by refining
surrounding triangles in a systematic manner. For details of this algorithm, we refer readers to [5],
[6] and [7].

Figure 6: A schematic depicting the refinement of a given element using the Red-Green algorithm.
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4 Numerical Results

To test the efficacy of the adaptation algorithm, a method of manufactured solutions was used. An
analytical solution uanalytical was first defined on a given domain. Then, this analytical solution
was used to obtain the exact expression for f(x, y) (the right hand side for the Poisson equation)
and for the Dirichlet boundary condition gD on the boundary of the domain. Moreover, for all
cases, an initial coarse unstructured mesh, generated using GMSH, has been used.

4.1 Case 1

As a first case, we consider solving the following Poisson equation with the specified analytical
solution:

∇2u = f(x, y) on Ω = [0, 1] x [0, 1]

u = gD on ∂Ω

uanalytical = e5 (x+y) sin(πx) sin(πy). (23)

The sequence of refined meshes generated during the adaptation algorithm are shown in Figure
(7). It can be seen that, as expected, the mesh refines itself at the top corner where the analytical
solution has the highest amount of variation. Moreover, Figure (8) depicts the numerical solution
on the coarsest mesh, the numerical solution on the final adapted mesh and the analytical solution.
Good agreement can be seen between the final numerical and the analytical solution. Moreover,
the mesh can be seen to be finest near the boundary at the corner as the solution rapidly decreases
from a value with a magnitude of about 1000 to a value of 0 (at the boundary). Figure (9) shows
the distribution in the error indicator η for each mesh. Near (x, y) = (0, 0), where the solution
variation is small, the error indicator has a low value while at the top right corner of the domain
the indicator value is large, resulting in these elements to be marked for refinement. Finally, the
convergence in the L∞ norm of the error as a function of degrees of freedom is shown in Figure (10)
where both adaptive and uniform refinement (which was completed using GMSH) was compared.
A significant drop in the L∞ norm can be seen in the first few adaptation steps, and the adaptive
scheme can be seen to get quite low error values with a relatively low number of elements. As
the number of degrees of freedom increase, negligible difference is noted between the adaptive and
uniform refinement, which may primarily be due to the moderately smooth nature of the analytical
solution.
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Figure 7: The sequence of refined meshes obtained in the adaptation process. The initial mesh is shown on
the top left and the final adapted mesh is at the bottom right.

Figure 8: The numerical solution computed on the initial mesh (left), the final adapted mesh (middle) and
the analytical solution (right).
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Figure 9: The error indicator (ηi) distribution for the first few meshes in the adaptation process.
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Figure 10: The convergence in the global L∞ error as degrees of freedoms are added during the mesh adap-
tation process.

4.2 Case 2

We consider in this case a similar Poisson problem with an alternate analytical solution:
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∇2u = f(x, y) on Ω = [0, 1] x [0, 1]

u = gD on ∂Ω

uanalytical = e−50 ((x−0.35)2+(y−0.35)2) (24)

As before, the sequence of refined meshes can be seen in Figure (11). The meshes refine more
and more about the peak of the exponential, while there is little to no refinement in the region of
the domain where the solution is approximately constant with a value of 0. Figure (12) compares
the numerical solutions on the coarsest mesh and the final adapted mesh along with the analytical
solution, where it can be seen that the final numerical solution follows the analytical one quite
closely. Moreover, Figure (13) shows the progression in the distribution in the error indicator
η for each mesh where it can be seen that the solver consistently marks elements to refine near
(x, y) = (0.35, 0.35) (the error indicator is highest in this region). Lastly, the convergence in the
L∞ norm of the error versus degrees of freedom is shown in Figure (14) where both adaptive and
uniform refinement has been compared. This case shows a significant advantage in using adaptation,
as consistently lower error values are seen for the adaptive case. In fact, to obtain an error value
near 0.001, about 800 degrees of freedom are needed for the uniform refinement case compared
to only 150 degrees of freedom for the adaptive case. This non-negligible difference in degrees of
freedom gives the adaptive approach much more computationally efficient for this case.

Figure 11: The sequence of refined meshes obtained in the adaptation process. The initial mesh is shown on
the top left and the final adapted mesh is shown on the bottom right.
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Figure 12: The numerical solution computed on the initial mesh (left), the final adapted mesh (middle) and
the analytical solution (right).

Figure 13: The error indicator (ηi) distribution for the first few meshes in the adaptation process.
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Figure 14: The convergence in the global L∞ error as degrees of freedoms are added during the mesh adap-
tation process.

5 Conclusions and Future Work

In this work, the adaptive finite element method has been studied. In particular, h-adaptive
methods have been investigated and compared to the case of uniform refinement. Appreciable
increases in the efficiency were noted for the adaptive approach, as relatively low errors could be
reached with fewer degrees of freedom.

Several additional avenues may be further investigated. One of these is the study of p-
adaptivity coupled with the h-adaptive framework that has been implemented. In this way, the
influence of changing the polynomial order may also be tested to see if further gains are realized.
Moreover, different error estimators may be studied as well. Several approaches exist to quantify
the error to know which elements to refine, and it would be quite relevant to investigate the ef-
ficacy of each of these different approaches. Finally, it would be interesting to study adaptivity
to different PDEs. We have focused in this work exclusively on the Poisson equation (an Elliptic
PDE), but more work may be done to investigate how the effects of adaptivity vary for Hyperbolic
or Parabolic equations.
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