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1 Introduction

Iterative methods have become quite popular in solving large sparse system of linear equations
of the form

Ax = b, A ∈ Rm×m, x, b ∈ Rm (1)

In the class of iterative methods, Krylov subspace methods are some of the most popular
and, among them, the generalized minimum residual (GMRES) algorithm is one of the most
used method for non-symmetric matrices. A central difficulty with the GMRES method is with
scaling in computational work and storage as the size of the Krylov subspace used increases. For
large matrices A, the standard GMRES method becomes impractical as it becomes infeasible
to store the larger Krylov subspace needed to find the solution. Due to the this, the restarted
GMRES method (GMRES(l)) is used where, after an l-dimensional Krylov subspace is formed,
it is used to find an approximate solution. The method is then restarted using this approximate
solution as the new initial guess, and the process is repeated until convergence.

A downside of restarted GMRES is the process of completely discarding old Krylov sub-
spaces on every restart cycle. This loss of information from earlier subspaces can result in slower
convergence and, in some cases, stalling, where no drop in the residual is seen after a restart
cycle. To tackle this, several GMRES variants have been proposed, with the general idea of
retaining more information between restart cycles and, in turn, accelerate convergence. In this
work, we investigate the GMRES-E (GMRES with eigenvectors) and LGMRES (”Loose” GM-
RES) algorithms which were formualted with the central purpose of accelerating the restarted
GMRES algorithm.

2 Background

2.1 GMRES

The GMRES algorithm is a projection method where the approximate solution is searched for
in a Krylov subspace. Given an initial guess x0 and the residual associated with that guess
r0, the l-th Krylov subspace is given as:
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Algorithm 1: The Restarted GMRES

Input: A, b, the initial guess x0 and l (the Krylov subspace dimension)
Result: The approximate solution xl to the system of equations

1 Compute r0 = b−Ax0

2 Generate the Arnoldi basis and matrix H̃ l using Arnoldi
′s method starting with r0

‖r0‖

3 yl = arg miny

∥∥∥‖r0‖2 e1 − H̃ l · y
∥∥∥
2

4 xl = x0 + V l · yl
5 If rl is small, return xl. Else, set x0 = xm and GoTo 1

Kl(A, r0) = 〈r0,Ar0, ...,A
l−1r0〉 (2)

Arnoldi’s method is then used to get an orthogonal basis for the subspace, which we will denote
using the matrix V l. We proceed next to search for the solution to the linear system in the
affine space x0 +Kl. The candidate solution that is optimal in the sense that it minimizes the
residual norm is given as:

xl = x0 + V l · yl
yl = arg min

y

∥∥∥‖r0‖2 e1 − H̃ l · y
∥∥∥
2

(3)

where H̃ l ∈ R(l+1)×l is an upper Hessenberg matrix.

A key challenge that arises with the standard GMRES method is that of memory use. If
m (the size of the matrix A) is large, storing the orthonormal basis becomes impractical for
large subspace dimensions. One approach to address this issue is through restarting where,
after an l-dimensional Krylov subspace is created, a candidate solution is found by minimizing
the residual. If this candidate solution has an error that is small enough, then it is returned.
If not, the candidate is used as a new initial guess and the process repeats. A high level
pseudocode of the restarted GMRES algorithm, adapted from [1], is given in Algorithm (1).

2.2 GMRES-E

The GMRES-E algorithm aims to accelerate convergence by augmenting the subspace in which
an approximate solution is searched for. In particular, the central aim of this method is
to augment the subspace with approximate eigenvectors that neutralize the effect of small
eigenvalues and in turn improve the convergence of the algorithm. For further details about
this method, we refer the reader to [2].

For matrices A ∈ Rm×m that are nearly normal (with a spectral decomposition A =
Z ·Λ ·Z−1), the convergence of GMRES can be shown to be similar to that of the Conjugate
Gradient method and given by the following (in which the initial guess x0 is assumed to be
the zero vector):

‖r‖
‖b‖
≤ 2 ‖Z‖

∥∥Z−1∥∥(1− 1√
κ+ 1

)m
(4)
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If the eigenvalues are arranged in increasing order (in absolute value), then κ in the above

bound is given as κ = |λn|
|λ1| . It is clear form equation (4) that the convergence rate deteriorates

if the matrix in question has both large and very small eigenvalues resulting in a large κ value.

This convergence bound can change drastically if the subspace used in the residual min-
imization includes some eigenvectors. Consider, once again, the matrix A from before along
with its spectral decomposition. Furthermore, consider the k eigenvectors {z1, ...,zk} associ-
ated with the k smallest eigenvalues of A. Say now that the minimum residual solution x̂
to the linear system of equations is searched for in the subspace 〈b,Ab, ...,Am−1b, z1, ...,zk〉.
The residual of the solution can then be shown to converges as:

‖r‖
‖b‖
≤ 2 ‖Z‖

∥∥Z−1∥∥(1− 1
√
κe + 1

)m
(5)

where κe = |λn|
|λk+1| . The result in equation (5) reveals a clear source of improvement to the

standard GMRES method. If a matrix has a handful of very small eigenvalues that deteriorate
convergence of the standard GMRES algorithm, the influence of these eigenvalues can be
removed by augmenting the Krylov subspace with their corresponding eigenvectors.

2.2.1 Implementation Details

The challenge now comes to finding the relevant eigenvectors of A, a problem that is hard
in and of itself. Fortunately, information concerning the eigenvalues and eigenvectors of A is
available during GMRES due to Arnoldi’s method when generating the orthogonal vectors to
span the Krylov subspace.

The standard GMRES-E restart iteration starts with a guess x0 (which gives an initial
residual r0) and a set of k approximate eigenvectors {zk} of A that will be used to augment
the l-dimensional Krylov subspace Kl(r0,A). Thus, the dimension of the subspace in which
the approximate solution x̂ will be searched for is of dimension s = l+ k. GMRES-E proceeds
just as in the standard GMRES algorithm where Arnoldi’s method is used first to compute an
orthogonal basis for the subspace. Denote by W ∈ Rm×s the vector whose first l vectors are
the orthonormal Arnoldi vectors qi for the l-dimensional Krylov subspace and the subsequent
k vectors are the approximate eigenvectors:

W = [Ql Zk], W ∈ Rm×s, Ql ∈ Rm×l, Zk ∈ Rm×k (6)

Arnoldi’s method is used first to obtain the orthogonal vectors for the Krylov subspaceKl(r0,A)
(just as in the standard GMRES method) to obtain Ql and a matrix Ql+1 ∈ Rm×(l+1). In the
GMRES-E approach, the orthogonalization process is continued with the vectors A · zk. The
net result then of the whole Arnoldi process is the following:

A ·W = Q̃ · H̃ (7)

Q̃ = [Ql+1 Qk], Q̃ ∈ Rm×(s+1), H̃ ∈ R(s+1)×s (8)
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where H̃ is upper-Hessenberg. Note that in equation (7) the matrix W is not orthonormal. The
approximate solution x̂ is then searched for in the space range(W ), x̂ = Wy, by computing
the optimal y that minimizes the residual norm just as in the standard GMRES method.

The computation of the approximate eigenvectors for A then follows, where a Rayleigh-
Ritz procedure is used. We search for approximate eigenvectors in the subspace range(W ) by
solving the following:

A · [Wgi]− θi · [Wgi] ⊥ range(W )

W TAW · gi = θi ·W TW · gi (9)

which is a generalized eigenvalue problem. A modification that can be made to get good
approximations for eigenvalues close to zero (and their corresponding eigenvectors) is found by
solving the modified problem:

W TAW · gi =
1

θi
·W TW · gi (10)

Solving equation (10) thus yields an approximation for the eigenvectors of the form zk = Wgk.
These are subsequently used to augment the Krylov subspace in the next restart iteration.

Therefore, at every restart iteration, GMRES-E retains some information between restarts
in the form of the approximate eigenvectors of the matrix. As restart iterations progress, and
these approximations become better and better, the faster convergence in the residual starts
to be observed as predicted by equation (5). An important point to note however is that
GMRES-E works best for certain problems than others. In particular, for problems that are
close to normal and where convergence is hampered by a few eigenvalues, GMRES-E will
perform well. However, as problems become highly nonnormal or for cases where solving the
eigenvalue problem at each step becomes computationally expensive, the benefits of the method
deteriorate. An overview of the pseudocode for the GMRES-E algorithm is given in Algorithm
(2).

2.3 LGMRES

Consider the standard restarted GMRES method using an l-dimensional Krylov subspace. The
residual after i restart cycles can be denoted as ri (this residual was thus generated using a
total of m× i iterations). The angle between the residual between consecutive restart cycles,
∠(ri, ri+1), is typically referred to as the sequential angles, and the angle between every other
residual, ∠(ri−1, ri+1), can be referred to as the skip angles. The process of discarding prior
Krlov subspaces between successive restarts in the standard GMRES method has been shown
in many cases to slow convergence. This primarily is a result of the fact that orthogonality
with the previously discarded subspaces is not maintained, an issue that can result in slow
convergence and in some cases even stalling. Moreover, in several cases with slow convergence,
the lack of orthogonality with earlier subspaces results in a distinctive pattern being observed
where the residual vectors in every other restart cycle point in nearly the same direction,
that is, the skip angles ∠(ri−1, ri+1) are small. LGMRES uses this finding as its primary
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Algorithm 2: The GMRES-E Algorithm

Input: A, b, {zi} (the set of k eigenvector approximations), the initial guess x0 and l (the
Krylov subspace dimension)

Result: The approximate solution xl to the system of equations
1 Compute r0 = b−Ax0 and q1 = r0

‖r0‖
/* Arnoldi’s Method: */

2 for j = 1, 2, ..., l do
3 wj = Aqj
4 Use an orthogonalization process (ex. Modified Gram−

Schmidt) to get qj+1 and entries in H̃ from wj

5 end
/* Augment the subspace using the approximate eigenvectors */

6 for j = 1, 2, ..., k do
7 wj = Azj
8 Use an orthogonalization process to get qj and entries in H̃ from wj

9 end
/* Solve the least squares problem using the augmented subspace for the approximate

solution */

10 yl = arg miny

∥∥∥‖r0‖2 e1 − H̃ · y
∥∥∥
2

11 xl = x0 + W · yl
/* Form the new approximate eigenvectors */

12 SolveW TAW · gi = 1
θi
·W TW · gi for the new approximate eigenvectors zi = Wgi

/* Return solution or restart if necessary */

13 If rl is small, return xl. Else, set x0 = xm and GoTo 1

motivation. In essence, the method is based on the principle that the small angle between
every other restart cycle can be seen as an indication that if some form of orthogonality to
earlier subspaces were maintained, convergence could be accelerated. For further details about
this method beyond what is described next, we refer the reader to [3, 4].

LGMRES looks to try to impose orthogonality to earlier subspaces and, in turn, increase
the skip angles ∠(ri−1, ri+1) by following along the simple idea from GMRES-E of augmenting
the traditional Krylov subspace used in each restart iteration by appending some vectors.
Consider the following error at the ith restart iteration

ei = xe − xi, (11)

where xe is the exact solution. Suppose now that, at the next restart iteration, the approximate
solution is searched for in the following affine space:

xi+1 ∈ xi +M, M = Kl(A, ri) ∪ span(ei). (12)

It is clear that, in this space, the exact solution can be found (thus, if the exact error were
to be augmented to the space, the linear system would be exactly solved). LGMRES follows
this idea by augmenting the subspace with approximations of the error between restart cycles
defined as

zi = xi − xi−1 (13)

5



LGMRES uses the k previous error approximations (zj , j = i− k + 1, i− k, ..., i) to augment
the subspace used to find the approximate solution at the i+ 1 restart iteration given byM =
Kl(A, ri) ∪ span({zj}j=(i−k+1):i). It is important to note also that the error approximation
zi ∈ Kl(A, ri−1). Therefore, including these vectors to augment subspaces with allows in a
way to retain information from previous Krylov subspaces when searching for solutions (and
some form of orthogonality to earlier subspaces is maintained).

LGMRES follows GMRES-E in a similar approach in how Arnoldi’s method is used to get
an orthogonal representation of the augmented subspace. Consider the ith restart cycle and
let Zk ∈ Rm×k hold the k previous error approximation vectors. Furthermore, let Ql ∈ Rm×l
hold the orthonormal Arnoldi vectors qi for the l-dimensional Krylov subspace Kl(A, ri−1).
Then, if W ∈ Rm×(l+k), W = [Ql Zk], Arnoldi’s method when used in LGMRES produces:

A ·W = Q̃ · H̃ (14)

Q̃ = [Ql+1 Qk], Q̃ ∈ Rm×(s+1), H̃ ∈ R(s+1)×s, s = (l + k) (15)

where H̃ is upper Hessenberg. Searching for the optimal solution xl ∈ span(W ) that minimizes
the residual then proceeds just as in the standard GMRES method.

We once again note that LGMRES performs well for certain problems. In conditions
where skip angles are small, LGMRES provides space for acceleration. In cases where GMRES
itself stalls, however, LGMRES typically will be unable to resolve this. Fortunately, LGMRES
is able to provide this speed-up with effectively no increase in computational cost relative to the
standard restarted GMRES method, making it therefore an attractive algorithm to consider.
A general overview of the LGMRES algorithm is provided in Algorithm (3).

3 Numerical Results

In this section, we perform several numerical tests to verify the theoretical properties of the
methods presented. In all cases, one of the key metrics used for comparisons is the number of
restart cycles needed to convergence. It should be noted that computational time/complexity
was not included for comparisons. This was primarily due to the fact that all solvers (including
the standard GMRES method) were implemented from scratch and these implementations were
not optimized effectively to allow for a fair comparison. For instance, in the GMRES method,
several methods perform a running QR factorization as the Krylov subspace increases in order
to make the least squares solve more efficient, however this was not done in our case. Similarly,
for GMRES-E, the formation of the Rayleigh-Ritz eigenvalue problem can be optimized using
upper triangular matrices, however this was not considered as well for simplicity reasons.

Presented first in the following section are separate numerical results for simple cases for
the GMRES-E and LGMRES method. Following this, several matrices from the University
of Florida Sparse Matrix Collection have been used to see how these methods perform on
practical, large-scale, problems. Furthermore, for the standard restarted GMRES method,
the notation GMRES(l) has been used to denote a solver in which an l-dimensional subspace
is used between restarts. Similarly, GMRES-E(l, k) and LGMRES(l, k) solvers correspond
to cases where an l-dimensional Krylov subspace is augmented with k eigenvectors or error
approximations.
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Algorithm 3: The LGMRES Algorithm

Input: A, b, {zi} (the set of k error approximations from previous restart cycles), the initial
guess x0 and l (the Krylov subspace dimension)

Result: The approximate solution xl to the system of equations
1 Compute r0 = b−Ax0 and q1 = r0

‖r0‖
/* Arnoldi’s Method: */

2 for j = 1, 2, ..., l do
3 wj = Aqj
4 Use an orthogonalization process (ex. Modified Gram−

Schmidt) to get qj+1 and entries in H̃ from wj

5 end
/* Augment the subspace using the prior error approximations */

6 for j = 1, 2, ..., k do
7 wj = Azj
8 Use an orthogonalization process to get qj and entries in H̃ from wj

9 end
/* Solve the least squares problem using the augmented subspace for the approximate

solution */

10 yl = arg miny

∥∥∥‖r0‖2 e1 − H̃ · y
∥∥∥
2

11 zl = W · yl // The error approximation for this restart iteration

12 xl = x0 + zl
/* Return solution or restart if necessary */

13 If rl is small, return xl. Else, set x0 = xm and GoTo 1

3.1 GMRES-E

We begin by looking at a simple numerical case to verify the theoretical properties of the
GMRES-E method. Consider a bi-diagonal matrix A ∈ R1000×1000 whose main diagonal entries
are 1, 2, ..., 1000 and whose super-diagonal entries are all 0.1. Furthermore, the right hand side
matrix is taken to have all entries 1.0 and the initial guess x0 is the zero vector.

In Figure (1) we display the results obtained using the standard restarted GMRES algo-
rithm and the GMRES-E algorithm. The GMRES(25) and GMRES-E(21,4) were used in the
study (therefore, the subspaces used to find the approximate solution for both methods was
the same with a dimension of 25). It can be seen that for this case, the GMRES-E method
does indeed accelerate convergence as its residual drops almost twice as fast. Shown also in
Figure (1) is the convergence in the approximate eigenvalues and eigenvectors generated from
the Rayleigh-Ritz procedure. It can be seen that in the first few restart iterations (about
the first 5), when the approximate eigenvectors are still quite off, no real acceleration in the
convergence rate is observed. However, after this point when the eigenvector estimates become
more accurate and their relative error decreases by at least one order of magnitude, the faster
convergence is observed.
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Figure 1: The residual convergence for the GMRES and GMRES-E method for the sample case (top
left). The spectral convergence rate (i.e. the slope on the semilog plot) of the residual (top right). The
convergence in the eigenvalue (bottom left) and eigenvector (bottom right) estimates.

3.2 LGMRES

We consider in this section a simple case to verify the theoretical properties of the LGMRES
algorithm. The system of equations used was from a problem labeled ”add20” (a circuit
simulation problem) from the University of Florida Sparse Matrix Collection. The right hand
side vector was taken to be a vector of ones and the initial guess was a vector of zeros.
Figure (2) shows the convergence properties of the standard restarted GMRES and LGMRES
algorithms. To perform a fair comparison, the same subspace size was used to search for
the optimal solution as the GMRES(30) and LGMRES(26,4) solvers were considered. It can
be seen that LGMRES is indeed able to accelerate convergence as it uses approximately half
as many restart iterations. Moreover, the slow convergence in GMRES indeed accompanies
a small skip angle ∠(ri+1, ri−1) observed in the residuals. It can be seen that LGMRES,
through augmenting the subspace with information of prior Krylov subpsaces through the
error approximations, is able to significantly increase the skip angles of the residuals and allow
for the theoretically predicted faster convergence.
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Figure 2: The residual convergence for the GMRES and LGMRES method for the sample case (top left)
and its spectral convergence rate (top right). The evolution of the sequential angle of the residuals for
the GMRES and LGMRES solve (botom left). Shown in the dashed line is the median sequential angle.
Similarly, the evolution of the skip angle of the residuals (bottom right).

3.3 Experimental Results

In this section, we study the performance of the standard restarted GMRES, GMRES-E and
LGMRES algorithm together on several test cases taken from the University of Florida Sparse
Matrix Collection. For all cases, the GMRES(30) solver was used as a baseline to compare to
the GMRES-E(26, 4) and LGMRES(26, 4) solvers.

For each case, Table (1) summarizes key theoretical properties that dictate how well
the GMRES-E and LGMRES method perform as accelerators. Shown first are the median
sequential angles, ∠(ri, ri−1), and skip angles, ∠(ri+1, ri−1), obtained from the GMRES(30)
runs. Additionally, to predict the performance of the GMRES-E method, two metrics are listed
for each case. The ”normality metric” is a measure of how normal the matrix of interest is. It
is computed by first forming the matrix D = ATA −AAT . The normality metric was then
defined as:

N =
‖D‖2F

size(D)
(16)

The metric is therefore just a simple measure of the size of the average entry in the matrix
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squared. Therefore, a small value indicates a matrix that is close to normal, while a high value
indicates the opposite. As discussed in Section 2.2, we expect GMRES-E to perform best for
those matrices that are close to normal. The next metric is denoted as the κ-ratio and is
a measure to see if a few eigenvalues are indeed impeding convergence. Let the eigenvalues,
sorted in increasing absolute value, be λ1, λ2, ..., λn. Motivated by the discussion in Section
2.2, we let the parameter κ0 be defined as κ0 = |λn|

|λ1| . Furthermore, if k eigenvectors plan to be

augmented to the subspace in the LGMRES method, we let κk = |λn|
|λk+1| . The κ-ratio is then

given as:

κ-ratio =
κk
κ0

=
|λ1|
|λk+1|

(17)

If there are a few eigenvalues (we consider the k-smallest) which are much smaller relative to all
others, the κ-ratio will be small, and this indicates that being able to remove the influence of
these eigenvalues by approximating their corresponding eigenvectors in the GMRES-E method
should in theory accelerate convergence by a large amount. On the contrary, if the value is
large and close to 1, it is an indication that there may not be a handful of small eigenvalues
affecting convergence and so the GMRES-E algorithm may not perform as well.

Figure (3) shows the acceleration of each solver relative to GMRES(30). All cases were

run until the relative residual, ‖r‖
‖r‖0

, was less than 10−11. In Figure (3), the ratio of the

number of restart cycles needed for GMRES(30) to solve the system to the number of restarts
needed by each GMRES variant is shown. For GMRES-E, we see that indeed the cases that
are most ”normal” and have the smaller κ-ratio, such as raefsky1 and cavity05, result in the
largest speed-up. Additionally, LGMRES predictably provides a larger speed-up to cases with
a smaller skip angle. Residual convergence plots are shown as well for certain cases in Figure
(4).

raefsky1 add20 orsreg_1 sherman1 sherman4 cavity05 fpga_trans_01 wang2
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Figure 3: The factor speed-up in the number restart cycles needed to converge to a residual ‖r‖‖r‖0
≤ 10−11

for the LGMRES(26,4) and GMRES-E(26,4) methods as compared to the GMRES(30) solver.
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Table 1: Several properties for the cases from the sparse matrix library considered. Included are the
median sequential (seq.) and skip angles from the GMRES(30) solves. Furthermore, the normality
metric (16) and κ-ratio (for the case of k = 4 eigenvectors being approximated) is shown as well.

Case Median Seq. Angle (◦) Median Skip Angle (◦) Normality Metric κ-Ratio
raefsky1 26.33 8.29 5.834e-03 1.923e-02
add20 46.24 0.93 2.534e-07 9.813e-01
orsreg 1 67.81 32.52 4.003e+06 8.837e-01
sherman1 28.35 0.17 0.000e+00 1.684e-01
sherman4 64.77 10.42 6.305e-01 7.120e-02
cavity05 8.68 3.36 2.086e-01 2.115e-02
fpga trans 01 23.33 0.18 2.374e-05 9.968e-01
wang2 34.75 7.10 2.065e-03 9.788e-02
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Figure 4: The residual convergence as a function of restart cycles for various cases from the sparse
matrix library.

4 Conclusion

In this paper, two popular techniques for accelerating the convergence of the restarted GMRES
algorithm have been studied: the GMRES-E and LGMRES algorithms. Both these approaches
look to augment the standard Krylov subspace to fix slow convergence issues. In the GMRES-E
method, approximate eigenvectors are appended to the Krylov subspace, while in the LGMRES
algorithm, approximations for the error in the solution are used. Numerical tests, moreover, do
indeed confirm that a significant reduction in the number of restart cycles needed to converge
can be observed (if certain properties are satisfied) for both methods of interest.
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